CHEMISTRY / BIOCHEMISTRY MAJOR

mhcc.edu/Science

Faculty Advisers

Dr. Elizabeth Cohen: 503-491-6012 Room AC2566
| Elizabeth.Cohen@mhcc.edu | Students with last name A-E
Bernadette Harnish: 503-491-7293 Room AC2596
| Bernadette.Harnish@mhcc.edu | Students with last name F-J
Dr. Michael Russell: 503-491-7348 Room AC2568
| Michael.Russell@mhcc.edu | Students with last name K-P
Dr. Joyce Sherpa: 503-491-7443 Room AC2565
| Joyce.Sherpa@mhcc.edu | Students with last name Q-U
Dr. Jessica Wittman: 503-491-7633 Room AC2589
| Jessica.Wittman@mhcc.edu | Students with last name V-Z

Chemistry is the study of the composition, analysis, structure and properties of matter as well as the transformations matter may undergo. With a degree in chemistry, a person can obtain a wide range of employment opportunities including research in scientific, environmental, or medical laboratories, forensics, food science, fermentation, qualitative analysis, or teaching.

Curricular Outcomes

At the completion of this curriculum, students should be able to:

• Retain and apply critical chemistry concepts while enrolled in the curriculum
• Use chemistry principles and logical reasoning skills to solve problems
• Demonstrate proper laboratory techniques with attention to detail, including the use of associated equipment and instrumentation
• Communicate scientific topics effectively
• Recognize connections between chemistry and other disciplines

Students interested in pursuing the Chemistry/Biochemistry major can complete the following courses toward the Science requirement and/or electives on the AS (https://catalog.mhcc.edu/degree-certificate-requirements/as/) (recommended), AAOT, AGS or ASLA degrees. Students are highly encouraged to work with a university transfer adviser to ensure transferability of courses. Admitted students may also log on to Navigate (https://mhcc.campus.eab.com/home/) to start the process of building an academic plan based on this major and can notify an adviser for review.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH221</td>
<td>General Chemistry I</td>
<td>5</td>
</tr>
<tr>
<td>CH222</td>
<td>General Chemistry II</td>
<td>5</td>
</tr>
<tr>
<td>CH223</td>
<td>General Chemistry III</td>
<td>5</td>
</tr>
<tr>
<td>CH241</td>
<td>Organic Chemistry I 1</td>
<td>5</td>
</tr>
<tr>
<td>CH242</td>
<td>Organic Chemistry II</td>
<td>5</td>
</tr>
<tr>
<td>CH243</td>
<td>Organic Chemistry III</td>
<td>5</td>
</tr>
</tbody>
</table>

1 This sequence may replace the 300-level organic chemistry requirement at colleges and universities. With an acceptable score on the ACS National Exam and a minimum of a “C” or better in each course, this sequence transfers as 11-15 credits of 300-level coursework to all Oregon public universities. Check with your transfer institution to determine any additional organic chemistry requirements.

Transfer Schools

• Eastern Oregon University (http://www.eou.edu/chem/)
• Oregon State University:
 • Chemistry (http://www.chemistry.oregonstate.edu/)
 • Biochemistry (http://biochem.science.oregonstate.edu/)
• Portland State University (http://www.pdx.edu/chemistry/)
• Southern Oregon University (http://www.sou.edu/chemistry/)
• University of Oregon (http://chemistry.uoregon.edu/)
• Western Oregon University (http://www.wou.edu/chemistry/)